The Hierarchy of Evidence

The Hierarchy of evidence is based on summaries from the National Health and Medical Research Council (2009), the Oxford Centre for Evidence-based Medicine Levels of Evidence (2011) and Melynyk and Fineout-Overholt (2011).

Melbourne

- I Evidence obtained from a systematic review of all relevant randomised control trials.
- II Evidence obtained from at least one well designed randomised control trial.
- **III** Evidence obtained from well-designed controlled trials without randomisation.
- IV Evidence obtained from well designed cohort studies, case control studies, interrupted time series with a control group, historically controlled studies, interrupted time series without a control group or with case- series
- V Evidence obtained from systematic reviews of descriptive and qualitative studies
- VI Evidence obtained from single descriptive and qualitative studies
- VII Expert opinion from clinicians, authorities and/or reports of expert committees or based on physiology
- Melynyk, B. & Fineout-Overholt, E. (2011). *Evidence-based practice in nursing & healthcare: A guide to best practice (2nd ed.).* Philadelphia: Wolters Kluwer, Lippincott Williams & Wilkins.
- National Health and Medical Research Council (2009). *NHMRC levels of evidence and grades for recommendations for developers of guidelines* (2009). Australian Government: NHMRC.
 - http://www.nhmrc.gov.au/_files_nhmrc/file/guidelines/evidence_statement_form.pdf
- OCEBM Levels of Evidence Working Group Oxford (2011). *The Oxford 2011 Levels of Evidence*. Oxford Centre for Evidence-Based Medicine. http://www.cebm.net/index.aspx?o=1025

.

Reference (include title, author, journal title, year of publication, volume and issue, pages)	Evidence level (I-VII)	Key findings, outcomes or recommendations
Tin, W., Milligan, W.A., Pennefather, P., & Hey, E. (2001). Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. <i>Archives of Diseases in Childhood Fetal Neonatal Edition</i> . 84: F106-F110.	IV	 Examination of case notes of 295 babies who were born before 28 weeks gestation ROP developed in babies with oxygen saturations maintained at 88-98% in the first 8 weeks of life; ROP was severe enough to require cryotherapy 4 times as often as babies given enough oxygen to maintain saturations of 70-90% Concluded that attempts to keep oxygen saturations at normal "physiological" level may do more harm than good in babies less than 28 weeks gestation
Tin, W. & Gupta, S. (2007). Optimum oxygen therapy in preterm babies. <i>Archives of Diseases in Childhood Fetal Neonatal Edition</i> . 92: F143-F147.	II	 Review of evidence regarding oxygen therapy in premature neonates, including relationship between oxygen therapy and development of ROP, BPD and PVL
Clucas, L., Doyles, L.W., Dawson, J., Donath, S., & Davis, P.G. (2007). Compliance with alarm limits for pulse oximetry in very preterm infants. <i>Pediatrics</i> . 119: 1056-1060.	V	 Descriptive study of compliance of setting upper alarm limit at a major tertiary centre – the upper alarm limit was too high on the majority of days that infants were in oxygen, suggesting that improvement in compliance with setting appropriate upper limits was required Oxygen toxicity in preterm neonates has been associated with conditions such as BPD and ROP

Tin, W., Walker, S., & Lacamp, C. (2003). Oxygen monitoring in preterm babies: too high, too low? <i>Pediatric Respiratory Reviews</i> . 4: 9-14.	II	 Review of relevant studies Maintaining oxygen saturation at "physiological" level for a healthy term neonate may do more harm than good in very premature neonates Growth and developmental outcome of babies less than 30 weeks' gestation at birth who were still oxygen dependent at a post-menstrual age of 32 weeks was not improved by keeping their oxygen saturation in the high 90s
Vanderveen, D.K., Mansfield, T., & Eichenwald, E.C. (2006). Lower oxygen saturation limits decrease the severity of retinopathy of prematurity. <i>Journal of Aapos: American Association for Pediatric Ophthalmology & Strabismus</i> . 10(5): 445-8.	IV	Decreasing oximeter alarm parameters in the first weeks of life for infants with a birth weight 1250g or lower may decrease the incidence of prethreshold ROP
Coe, K. (2007). Nursing Update on Retinopathy of Prematurity. <i>JOGNN</i> . 36(3): 288-292.	II	 Review of evidence and practice In infants born below 32 weeks gestation, targeting pulse oximetry saturations between mid 80s and mid 90s is best practice Rates of grades III and IV ROP decrease with targeting of oxygen saturations at lower level